文件名:ssd_mobilenet_v1_pets.config
路径:/path/to/models/research/object_detection/
models 下载地址:Github - TensorFlow Models
model {
ssd {
// 类别数,不包括 background
num_classes: 20
// 原文:Scales location targets as used in paper for joint training
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
// 匹配规则
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
}
}
// 区域相似度度量规则,原文 region_similarity_calculator
similarity_calculator {
iou_similarity {}
}
// 预测用的 defaut_boxes
anchor_generator {
ssd_anchor_generator {
num_layers: 6
min_scale: 0.2
max_scale: 0.95
aspect_ratios: 1.0
aspect_ratios: 2.0
aspect_ratios: 0.5
aspect_ratios: 3.0
aspect_ratios: 0.3333
}
}
image_resizer {
fixed_shape_resizer {
// 输入图片高度
height: 300
// 输入图片宽度
width: 300
}
}
// 卷积预测层模块参数,原文 ssd_box_predictor
box_predictor {
convolutional_box_predictor {
min_depth: 0
max_depth: 0
num_layers_before_predictor: 0
use_dropout: false
dropout_keep_probability: 0.8
kernel_size: 1
box_code_size: 4
apply_sigmoid_to_scores: false
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
truncated_normal_initializer {
stddev: 0.03
mean: 0.0
}
}
batch_norm {
train: true,
scale: true,
center: true,
decay: 0.9997,
epsilon: 0.001,
}
}
}
}
// 特征提取
feature_extractor {
type: 'ssd_mobilenet_v1'
min_depth: 16
depth_multiplier: 1.0
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
truncated_normal_initializer {
stddev: 0.03
mean: 0.0
}
}
batch_norm {
train: true,
scale: true,
center: true,
decay: 0.9997,
epsilon: 0.001,
}
}
}
loss {
// 损失函数
classification_loss {
weighted_sigmoid {}
}
// 损失函数
localization_loss {
weighted_smooth_l1 {}
}
// 难样本挖掘规则
hard_example_miner {
num_hard_examples: 3000
iou_threshold: 0.99
loss_type: CLASSIFICATION
max_negatives_per_positive: 3
min_negatives_per_image: 0
}
classification_weight: 1.0
localization_weight: 1.0
}
normalize_loss_by_num_matches: true
post_processing {
// 图像后处理,只用于验证,不参与训练流程
batch_non_max_suppression {
score_threshold: 1e-8
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 100
}
// 图像后处理,只用于验证,不参与训练流程
score_converter: SIGMOID
}
}
}
train_config: {
// 每迭代一次输入的图片数量
batch_size: 16
optimizer {
rms_prop_optimizer: {
learning_rate: {
exponential_decay_learning_rate {
initial_learning_rate: 0.001
decay_steps: 40000
decay_factor: 0.1
}
}
momentum_optimizer_value: 0.9
decay: 0.005
epsilon: 1.0
}
}
fine_tune_checkpoint: "/usr/local/anaconda3/lib/python3.6/site-packages/tensorflow/models/research/object_detection/ssd_model/ssd_mobilenet/model.ckpt"
from_detection_checkpoint: true
load_all_detection_checkpoint_vars: true
// 训练迭代次数
num_steps: 50200
data_augmentation_options {
random_horizontal_flip {}
}
data_augmentation_options {
ssd_random_crop {}
}
}
train_input_reader: {
tf_record_input_reader {
input_path: "/usr/local/anaconda3/lib/python3.6/site-packages/tensorflow/models/research/object_detection/ssd_model/pascal_train.record"
}
label_map_path: "/usr/local/anaconda3/lib/python3.6/site-packages/tensorflow/models/research/object_detection/ssd_model/pascal_label_map.pbtxt"
}
eval_config: {
metrics_set: "coco_detection_metrics"
// 验证集中图片数量
num_examples: 1100
}
eval_input_reader: {
tf_record_input_reader {
input_path: "/usr/local/anaconda3/lib/python3.6/site-packages/tensorflow/models/research/object_detection/ssd_model/pascal_val.record"
}
label_map_path: "/usr/local/anaconda3/lib/python3.6/site-packages/tensorflow/models/research/object_detection/ssd_model/pascal_label_map.pbtxt"
shuffle: false
num_readers: 1
}